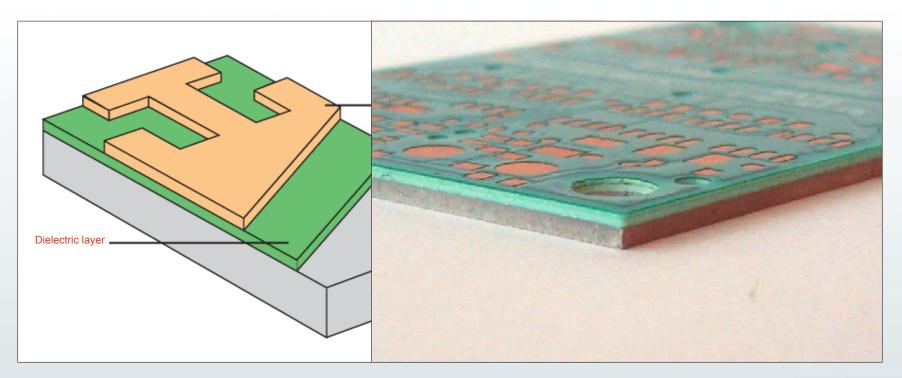
NCAB Group | Seminar no. 7

Insulated Metal Substrate

14111

42.1 General		Yes or No	Max hole	Min hol size
	Detail	V	0.5	0.2
	Soldermask IPC 4761 Type VI	v	0.4	0.25
	Resig non-conductive IPC4/61 Type 11	Y	0.4	0.25
	Resin electrical conductive	N		
	Resin thermal conductive	V	0.9	0.1
	Over plated/ capped IPC 4761 type VII	1	1	


4.2.2 Plog depth (solder mask IPC4761 type VI)

Emplish (U.S.)

Board Thickness (H) Holes size(D)	Q.AmmsH<1.0mm	1.0mmsH<1.8mm	1.5mmsH<
9.2mmsDc0.6mm	A=100%	A=100%	A=70%
0.5mmsDs0.8mm	A=100%	A=70%	A=70%

Introduction to IMS

INTRODUCTION TO IMS What is an IMS PCB?

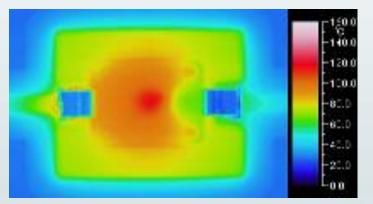
IMS = Insulated Metal Substrate

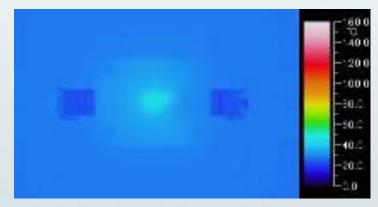
Copper circuitry bonded onto an electrically insulated thermal dielectric layer, that is bonded to a metallic substrate.

INTRODUCTION TO IMS What is an IMS PCB?

- The insulating thermal dielectric is a special material, with good thermal conductivity; normally it is 8 to 10 times more thermally conductive than FR4.
- The dielectric is normally is made using a filling material that normally used aluminium oxide, aluminium nitride, boron nitride, magnesium oxide or silicon oxide.
- An aluminium metal base is perhaps the most common metallic base. It is suitable for drilling, punching and cutting.
- In most cases and IMS board reduced the need for heat sinks.

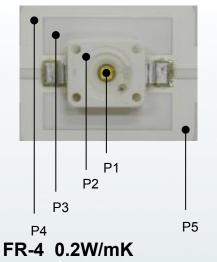
- Increased thermal conductivity
- Reduces working temperature of PCB
- Enables better use of surface mount technology cm² / in²
- Maintains management of physical size of PCB
- Reduces need for heat sinks and other mounting hardware including thermal interface material
- Enables high current applications
- Replaces fragile ceramic substrates with greater mechanical durability



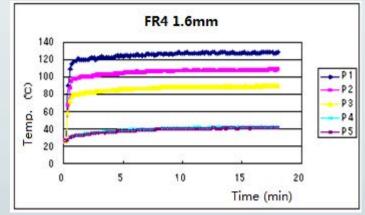

Below we can see thermal imaging of an LED under load conditions.

Left image uses FR4 PCB - 1.60mm with 35um Cu.

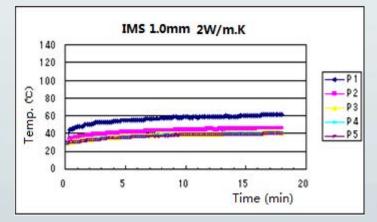
Right images uses IMS PCB - 1.00mm Al /100um dielectric also with 35um Cu.



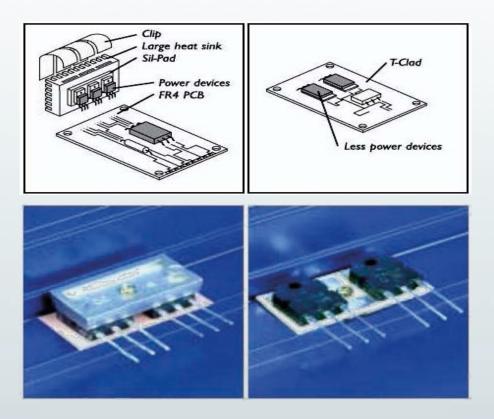
Maximum temp = $129.1^{\circ}C$

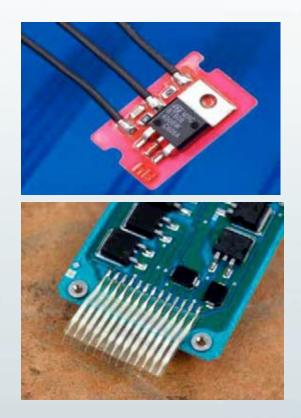


Maximum temp = $61.9^{\circ}C$

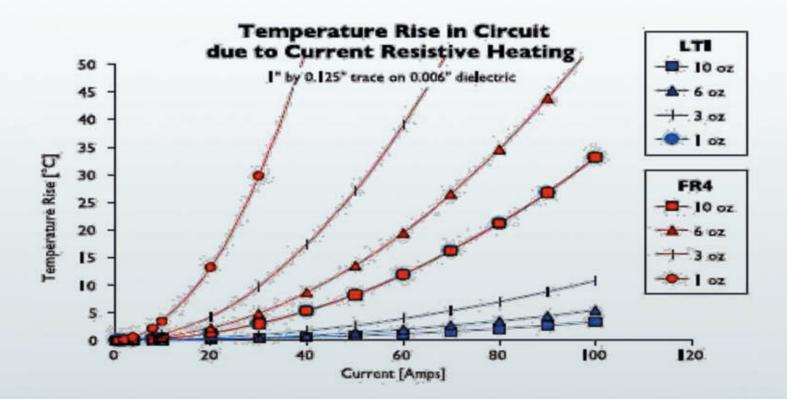


1.6mm thickness with 35um Cu

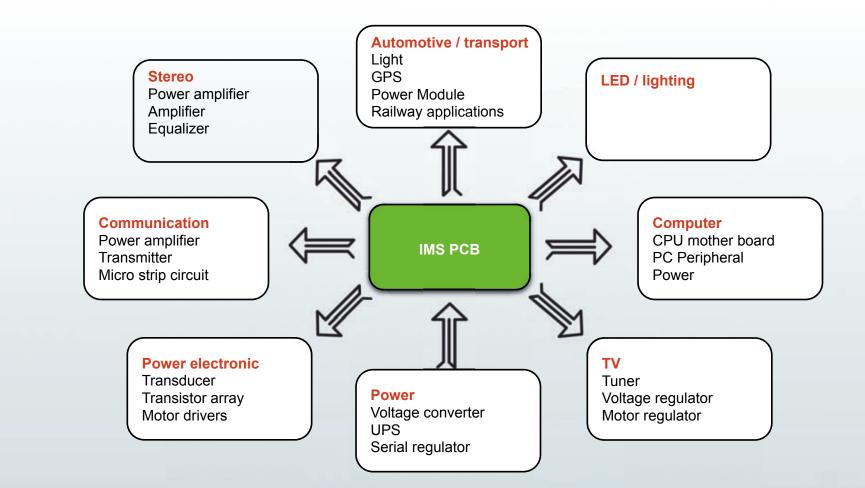



IMS 2W/mK (AI 1.0mm ∕ 100um ∕ Cu 35µm)


Can reduce the size of components.



Reduce using more material for heat sink



Can withstand the affects of higher current.

INTRODUCTION TO IMS Applications for IMS boards

INTRODUCTION TO IMS How do IMS PCB's work?

HOT

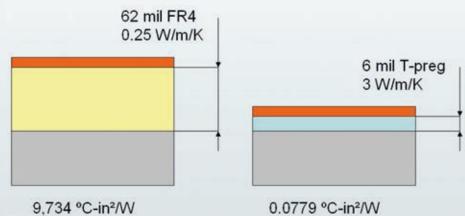
An IMS PCB uses **thermal conductivity** to transfer the heat - from the warmer to the cooler part of the PCB.

COLD

Thermal conductivity relates to the ability of the **material** to transfer heat, and is measured using W/m/K. All materials transfer heat, with some better than others:

ALUMINUM	205 W/m/K
WATER	0.56 W/m/K
FR4	0.20 - 0.25 W/m/K
THERMAL PRE-PREG	1.00 – 5.00 W/m/K
AIR	0.024 W/m/K

INTRODUCTION TO IMS How do IMS PCB's work?


Thermal Resistance (Tr) is the resistance that the heat will encounter as it tries to transfer through the substrate (hot to cold).

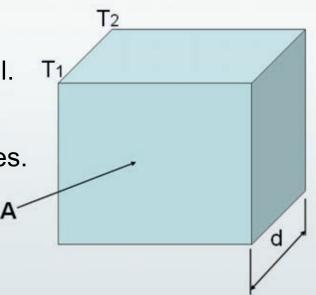
It's measured in the term °C-m²/W or °C-in²/W

Tr shall be as low as possible and is linked to the **thermal conductivity** of the material.

- d = Thickness in meter
- **λ** = Thermal conductivity

Tr = d / ʎ

The IMS concept is to have a thin material with high thermal conductivity.

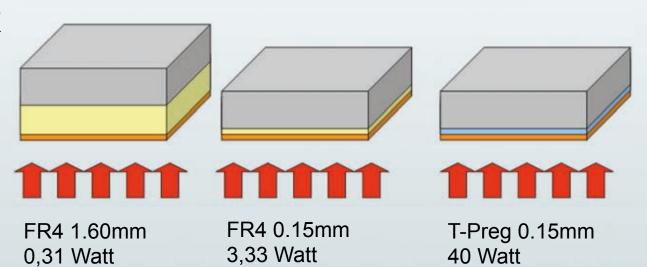


How much heat can be transferred away?

It depends of these factors:

- **λ** = The thermal conductivity of the material.
- **d** = The thickness of the substrate.
- ΔT = Difference in temperature between sides.
- **A** = The area that will transfer the heat

Heat transfer (W) = $\Lambda * A * \Delta T / d$


Examples below show the difference in insulation material, using the formula $W = A * A * \Delta T / d$, where:

A = 1cm²

ΔT = 20 °C

d = Thickness of material as shown below

- **λ =** FR4 0.25 W/m/K
- **λ** = T-Preg 3 W/m/K

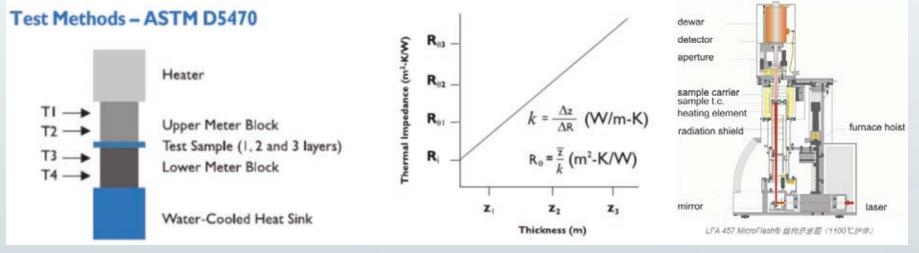
Readjusting the formula, we can define the necessary thickness of dielectric needed for a specific reduction in temperature:

 $d = \lambda * A * \Delta T / w$, where:

d = Thickness of material as trying to calculate below

A = T-Preg 3 W/m/K = 0.003 W/mm/K $A = 1 cm^2 = 100 mm^2$ $\Delta T = 20 °C$ W = 40 watt (T-Preg)

d = 0.003 x 100 x 20 / 40 = **0.15mm**

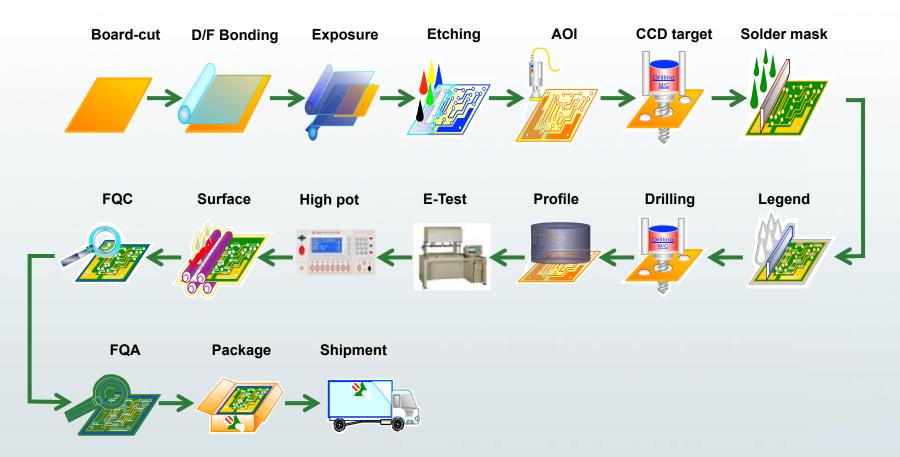


ASTM D5470 (ASTM: American Society for Testing Material) used to measure the conductivity of thermal material.

Measure Thermal impedance (R_0) of 3 samples with different thickness (Z_0), base on this data to calculate conductivity k.

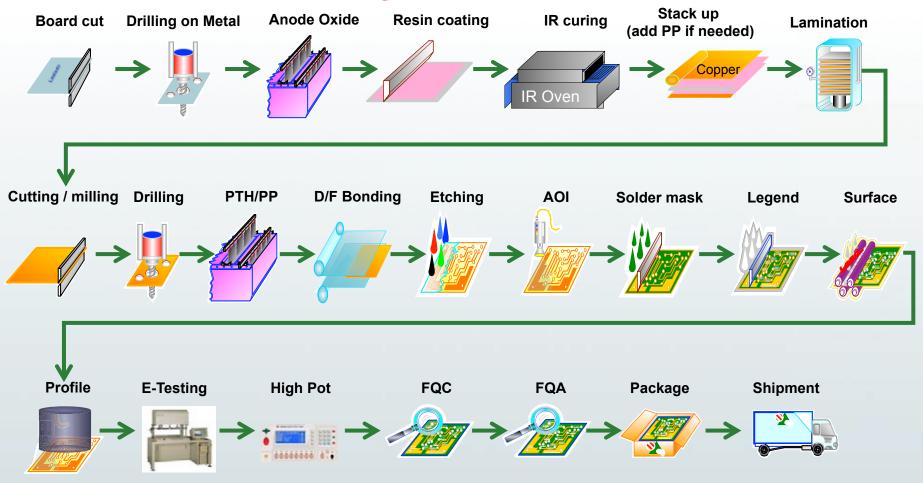
LFA 457

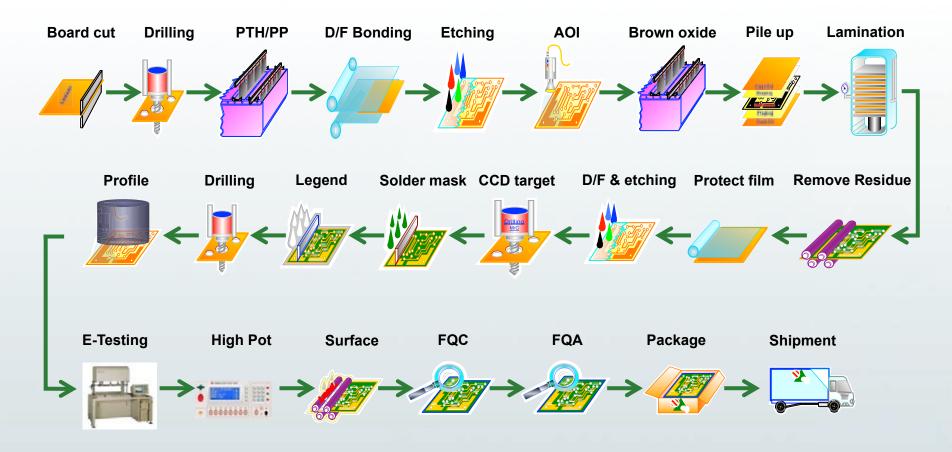
2 in. diameter stack (ref. 3.14 in2) - 10-500 psi, 1 hour per layer



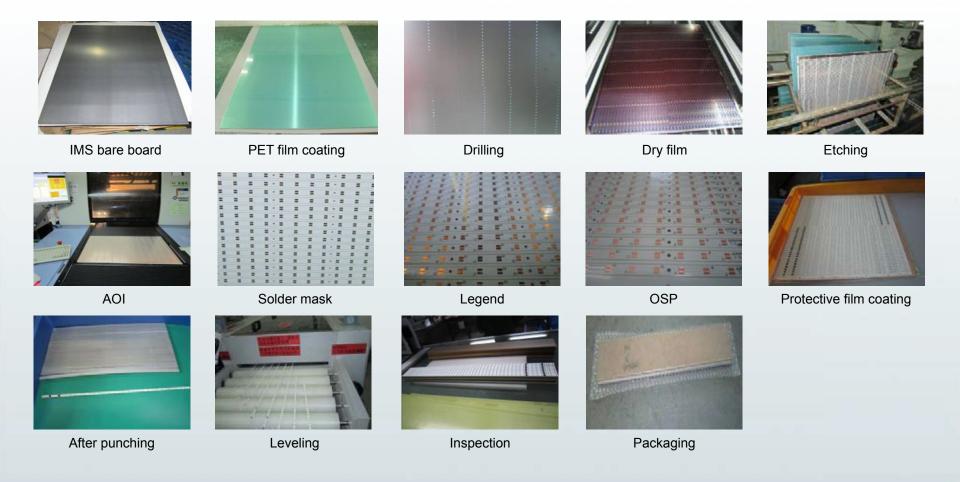
Manufacturing

1.1.1


MANUFACTURING PROCESS Overview – single sided


MANUFACTURING PROCESS

Overview – Double layer



MANUFACTURING PROCESS Overview – Double side FR4 + Metal base

MANUFACTURING PROCESS Overview – Pictures of boards in process

MANUFACTURING PROCESS Material Cutting

Material stores

Cutting material

MANUFACTURING PROCESS

Material issue – critical to quality

- KW:Thermal conductivity and high-pot test will be taken to check the reliability every 2 days / every 10000 panels.
- KW: Other testing is similar to normal FR4 controls such as Tg, thermal shock etc. Dielectric thickness will be checked by thickness machine (peel off at the board edge). During coating the factory will check the first and last board for dielectric coating thickness.
- The AI base side will be covered by a protective film. Normally, this is PET material with adhesive and there are different types of adhesive with different heat resistance so also depends upon surface finish (HASL / LF-HASL).
- Laminates should be stored in a cool, dry, ventilated environment (<80%, ≤30 deg C) and always be stored flatly.
- Shelf time of IMS material is normally 2 years.

MANUFACTURING PROCESS Drilling

MANUFACTURING PROCESS

Drilling – Critical controls

- UC drill bit (<=0.5mm; others same to FR4);
- Hole size $\geq \frac{3}{4}$ board thickness; Minimum 0.2mm drill bit
- Stack up: lower than FR4, and according to board thickness and length of drill bit typically 2 high.

Critical to quality

Wrong hole size, burr, not drill through, ring damage, mis-registration, more holes, hole missing.

Main Control Items

Spindle speed: 20%~40% FR4

Retract rate: equivalent FR4

Feed rate: 20%~40% FR4

Hits: 200 holes~500 holes

Only 1 time re-sharpen due to impact from drilling through aluminum.

MANUFACTURING PROCESS PTH + Panel Plating

PTH

Panel Plating

Metal Oxide

(conductive or non-conductive)

MANUFACTURING PROCESS Dry film / Imaging

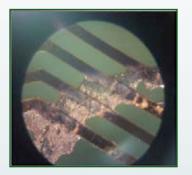
D/F pretreatment line

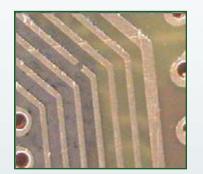
Auto D/F laminator

Automatic exposure machine

MANUFACTURING PROCESS

Dry film / Imaging – critical controls


- For single layer, normally only cover dry film on one side
- For boards etching, normally use Alkaline (NH₄Cl + NH₃ · H₂O) serial chemical, that will be no attack to the Al base
- Al metal base has no effect to the temp controls of chemistry.



MANUFACTURING PROCESS

Dry film / Imaging – critical to quality

Nick in track, open, short, line out of spec., residue, under developing, dry film debris.

Main Control Items (typically similar to FR4)

- Grinding check
- D/F bonding temp. speed
- Exposure energy
- Concentration of chemical
- Uniformity of etching

MANUFACTURING PROCESS Soldermask / Legend

S/M pretreatment line

Manual exposure machine

Semi-auto silk screening machine

Solder mask baking oven

MANUFACTURING PROCESS

Soldermask / Legend – critical controls

- 90% of products use white color soldermask and common material is Taiyo PSR 4000 WT02.
- We can also support PSR 4000 LEW1, and also run samples using LEW 3, but there is no UL.
- UV intensity during exposure has no difference when compared to processing FR4 boards.
- Vacuum on artwork will not be changed because of AI base and its thickness.
- For automotive or if opening smaller than 0.05mm, use CCD exposure machine to get better registration precision.
- Baking time after developing should be controlled (same to FR4), to control the adhesion, contamination and potential discoloration of white soldermask surface.
- Only rework one time.

MANUFACTURING PROCESS Soldermask / Legend – critical to quality

Extreme soldermask thickness, pin holes and bubbles, under exposure, over developing, soldermask adhesion problems and misregistration.

Web breakdown

Misregistration

Key controls point

- Surface pre-treatment
- Viscosity of ink
- Exposure energy
- Film registration
- Concentration of chemical
- Parameter of developing

MANUFACTURING PROCESS Profile - Routing / V-Score / Punching

Routing machine

Laser cutting (FP only)

Punching machine

V-Cut machine

Water cooled machining

MANUFACTURING PROCESS **Profile – critical controls**

According to the metal base to choose suitable profile type.

Routing - Water cooling vs. 'dry' routing

- Speed (rotational): 15 30krpm Feed (penetration) : 0.2 0.3m/min
- Cutting speed: 6 12mm/sec
- Low efficiency option, higher cost, longer LT and greater tolerances (#2)

V-Score

- Speed (rotational): 8~12krpm
 Run speed: 20~40m/min
- Length of score/ cut: 40000 50000m and 5 times re-sharpened
- Spindle hits after re-sharpened = New hits * (1-(10%+2%* re-sharped times))
- Leaves burrs and some manual work needed to keep edges smooth (#3)

MANUFACTURING PROCESS **Profile – critical controls**

Punching

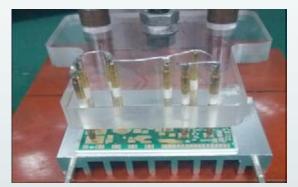
- Hydraulic punching machine = 160T and 300T
- Mechanical press : 20T, 40T
- Hits: 60,000 80,000 hits/ panels
- Re-sharpen frequency = every 3,000 6,000 hits
- Still some edge deformation, but high eficiency option = faster. (#1)

MANUFACTURING PROCESS

Profile – critical to quality

Wrong profile dimensions / size, burr, mis-registration, missing out-line

Key control point (Parameter)


- For outline normally use calipers to measure the outline dimension. For special dimension such as irregular shape and positional tolerance requirements the PCB will be checked by 3D machine;
- Preferred to use water cool during routing for IMS.
- The tolerances of out line = +/- 0.1mm
- Heavier punch tools on hardness and thickness of material and perimeter of outline

MANUFACTURING PROCESS Final processes

Electrical test machine

Hi-Pot test machine

Packaging machine

MANUFACTURING PROCESS

Surface treatement – critical controls

- HASL process with heat sink will reduce temp of solder pot, so tight controls on temp are needed and will stop producing once the temp has dropped lower than requirement (wait until back up to temperature).
- When surface treatment is immersion tin, silver OSP then Hi pot testing will be done before surface finish.

Critical to quality Similar to standard PCB's

NOTE: IMS / heatsink has no affect for ENIG processes.

MANUFACTURING PROCESS Test equipment

IR reflow

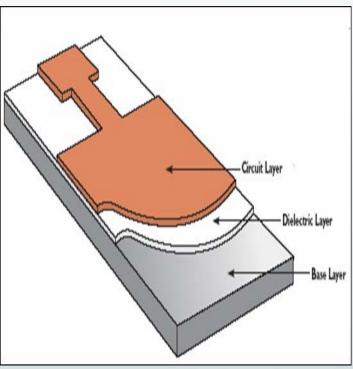
CMI copper thickness

3D 1000x magnifier

Thermal Cycling

Hot oil testing

2D measurement



Salt humidity chamber

Material considerations

Simple to IMS base copper, it is combined by copper layer, Dielectric layer and metal base layer, how to choose the suitable material for your application?

Copper foil

- Current carrying demands is the key drived when selecting the suitable copper thickness.
- Cost is also influenced with heavier copper weights being more costly.
- Standard copper foil, normally H-4oz with UL approval, yet beyond this and up to 6oz can be supported as special projects without UL approval.

Thermal dielectric thickness can be **50 – 200um**, and there are numerous brands on offer:

- Bergquist
- Laird T-LAM
- Arlon
- KW
- Ventec
- Polytronics
-

MATERIAL CONSIDERATIONS Material choices – key element for dielectric

The **thermal dielectric / thermal pre-preg** is the key element in the construction of an IMS PCB.

Through its high thermal conductivity (W/m/K), it defines the ability to transfer of heat from the circuit side, dissipating it through to the metal core. Therefore, this property defines the thermal performance of the PCB, while still ensuring electrical good insulation.

Thickness of the dielectric would affect the Thermal Resistance. The thinner dielectric the smaller Thermal Resistance;

High-pot resist property: Dielectric Strength / Breakdown voltage ;Unit of Dielectric Strength is "V / mil" ; of Breakdown voltage is "KV";

MOT – Max. operation temperature, higher is better to support high temperature component;

MATERIAL CONSIDERATIONS Material selection

MOT is one of the key elements when selecting materials – refer to UL796 file.

A higher MOT can be helpful for higher temperature of components

23.3 Oven conditioning

23.3.1 Following the test described in Sections 23.1 and 23.2, two of the four test samples are to be placed for 240 consecutive hours (10 days) in a full-draft circulating-air oven that complies with the Standard Specification for Forced-Convection Laboratory Ovens for Evaluation of Electrical Insulation, ASTM D 5423, maintained at a temperature determined by the following formula:

t2 = 1.076 (t1 + 288) - 273

in which:

t2 is the 240-hour (10-day) oven temperature in °C, and

t1 is the assigned temperature rating of the printed-wiring board in *C.

See Table 23.1 for the 240-hour (10-day) oven conditioning temperatures.

23.3.1 revised April 17, 2006

Table 23.1 Oven conditioning temperatures for the desired (or established) MOT

Table 23.1 revised June 18, 2007

t ₁ , Desired (or established) MOT (*C)	t ₂ , Oven temperature (°C) for 240-hour (10-day) oven conditioning	t ₅ . Oven temperature (*C) for 1344 hour (56-day) oven conditioning	
75	118	98	
80	123	103	
85	129	108	
90	134	113	
105	150	128	
120	167	144	
125	172	149	
130	177	154	
150	199	174	
155	204	179	
160	210	184	
170	220	195	
175	226	200	
150	231	205	

23.3.2 An alternate 1344-hour (56-day) oven conditioning temperature may be used if the fabricator anticipates that the higher test temperature and increased Bond Strength test requirements of the 240-hour (10-day) oven conditioning program will be too severe for the printed-wiring board. Following the test described in 23.2.1, the two remaining (of the four) test samples are to be placed for 1344 consecutive hours (56 days) in a full-draft circulating-air oven that complies with the Standard Specifications for Forced-Convection Laboratory Ovens for Evaluation of Electrical Insulation, ASTM D 5423, maintained at a temperature determined by the following formula:

t3 = 1.02 (t1 + 288) - 273

MATERIAL CONSIDERATIONS Material selection

Some most popular materials are listed below, detail can refer to the data sheets.

Material vendor	Туре	мот	Thermal conductive (W/m K)	Тg	Dielectric thickness (um)	Copper Thickness	Mark
Arlon	92ML	140	2	170	75-152	E:17-102 I:77	Single and double side AI / Cu base
Arlon	92ML	90	2	170	75-152	17-102um	Single side Cu / AL base
Bergquist	HT	140	2.2	150	76±5	34-204um	Single side Cu / AL base
Bergquist	HIGHROAD® T30.20	130	1.1	90	76	34-102um	Single side AL base
Bergquist	HPL-03015	140	3	185	38±5	34-102um	Single side Cu / AL base
Bergquist	MP	130	1.3	90	76±5	34-204um	Single Cu / Al base
Kinwong	KW-ALS	90	2	110	80-200	17-140um	Single side stainless steel / Cu / AL base
Kinwong	KW-ALG	90	1.5	120	80-200	34-102um	Single Al base
Ventec	VT-4A2	90	2.2	130	75-200	17-204um	Single side AL base
Ventec	VT-4B	130	3	130	75-200	34-204um	Single side AL base
Laird	T-Lam DSL 1KA	110	3	105	100-305	34-136um	Single side Cu / AL base
Laird	T-Lam DSL	110	3	105	102-305	E:17-102 I:102	Single and double side Cu base
Laird	T-Lam DSL	110	3	105	102-305	E:17-102 I:76	Single and double side Cu / AL base
Laird	T-lam SS HTD	150	2.2	168	102-152	17-102um	Single side Cu / AL /Cu alloy base

MATERIAL CONSIDERATIONS Material selection

Material vendor	Туре	мот	Thermal conductive (W/m K)	Тg	Dielectric thickness(um)	Copper Thickness	Mark
PTTC	PTTC(TCP-2L)	90	2	130	80-150	E:34-102 I:67	Single and double side AL base
PTTC	TCB-2AL	110	2.7	130	80-150	17-102um	Single AI base
PTTC	TCB-2L	90	2	130	80-150	34-102um	Single AI base
Qingxi	CS-AL-88,CS-AL-89	130	2	100	60-200	34-102um	Single side Cu / AL base
Dongli	EPA-M2CTI	90	2	145	75-150	34-102um	Single AI base
DOOSAN	DST-5000	110	2	110	95-200	34-102um	Single side AL base

Base metal

- Consider the application to choose suitable metal base
 - For normal lighting application, can choose 1K (1100) and 3K (3003)serial Aluminium;
 - For Power application, can choose 5K (5052) serial Aluminium;
 - For Rectification application (shaking environment), can choose 6K (6061)serial Aluminium;
 - Postfix name "H" means; Work hardening state to increase strength; "T" means after heat treatment; the first digital after "H" & "T" means degree; see next slide.
- Copper base, much better for heat sink;
- Stainless steel, good for electromagnetism shielding;

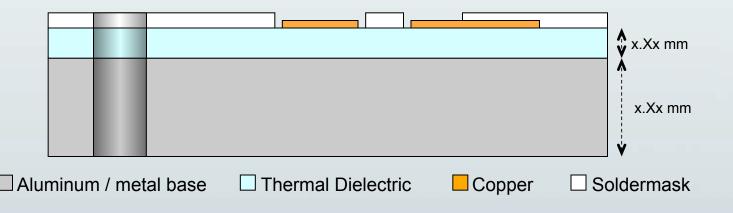
Metal (Alloy)	Thermal conductivit y (W/m*K)	CTE (PPM / K)	Density (g/cm3)	Elasticity modulus (Gpa)	Mark
C1100 Cu	391.1	16.9	8.94	117	Low CTE, high thermal conductivity; high cost
1060 H18 Al	203	23.5	2.7	25.8	Pure AI, good thermal conductivity but hard for mechanical making, low cost
5052 H34 Al	150	25	2.7	25.9	Al-Mg alloy, good bending property, suitable for punch; middle cost
6061 T6 AI	150	25	2.7	26	Al-Mg-Si alloy, suitable for CNC, V-cut; high cost;
304 stainless steel	16	16	7.9	200	
Cool Roll steel	50	13	7.9	200	

MATERIAL SELECTION Thermal management – Material conclusions

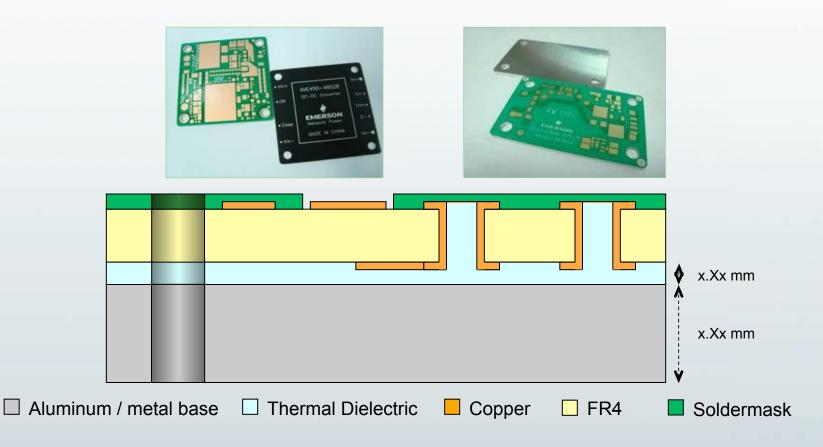
Use thermal dielectric material with high thermal conductivity.

Keep the thermal resistance as low as possible through using thin dielectric material in the construction.

Consider the MOT, Dielectric Strength to get suitable material according to application;


Additional:

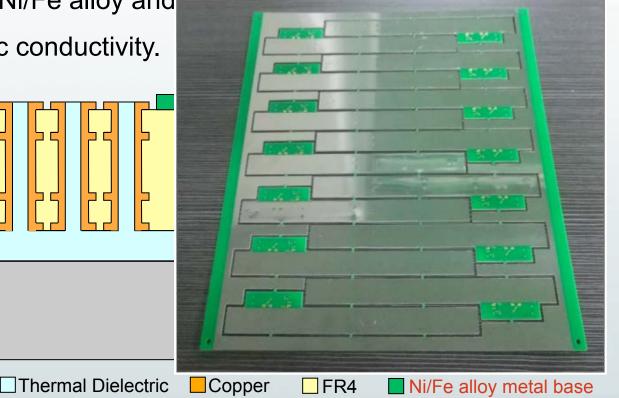
- Design the tracks with a proper width so they do not heat up the construction.
- Consider thermal vias in builds if you need more than one layer.


Single layer IMS (maximum length of 1200mm)

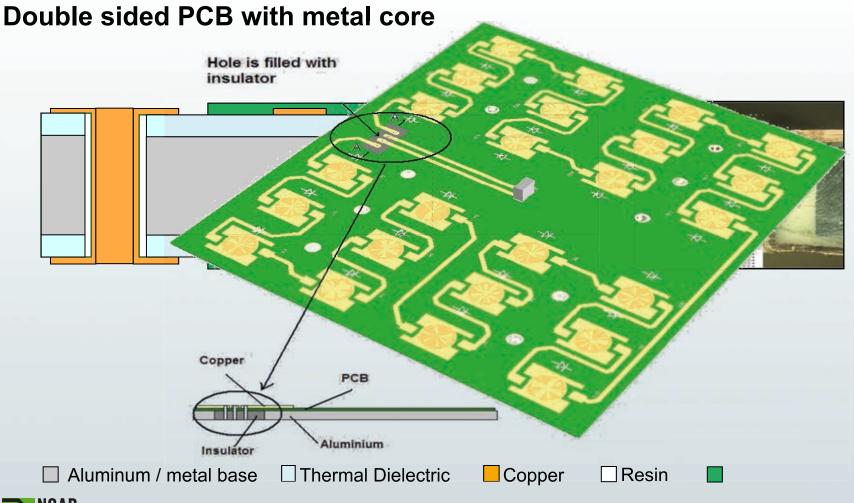
Competent terrier per	Telefor fet
and the second s	

4	ananaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
The second	

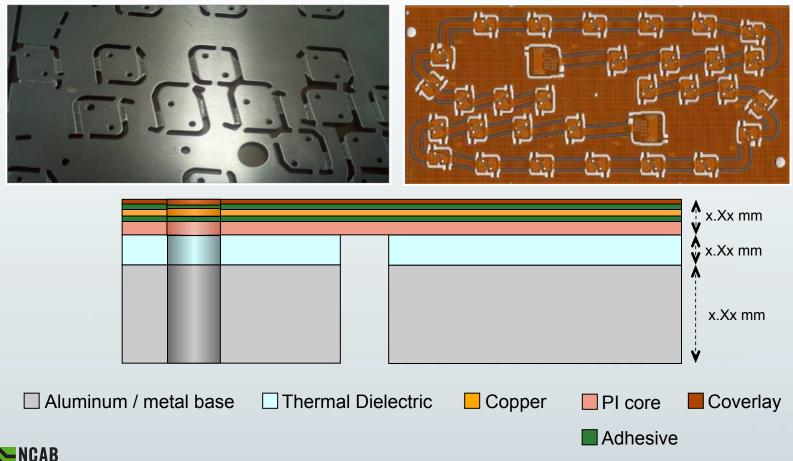
Double sided PCB with metal base

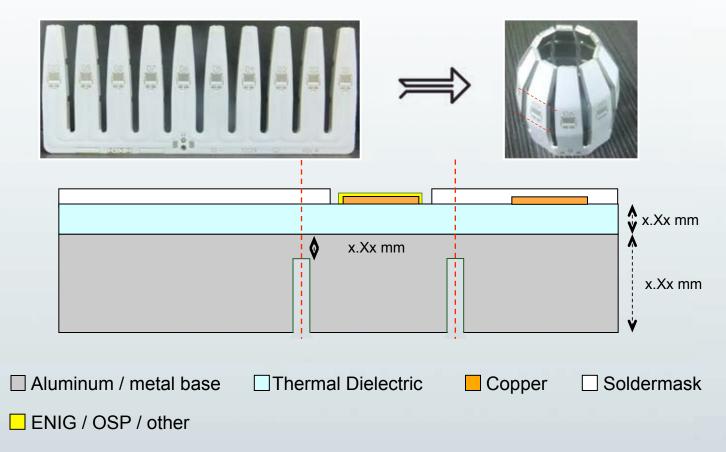


Aluminum / metal base

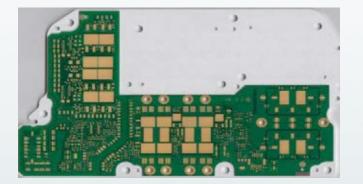

Multi layer PCB with metal base

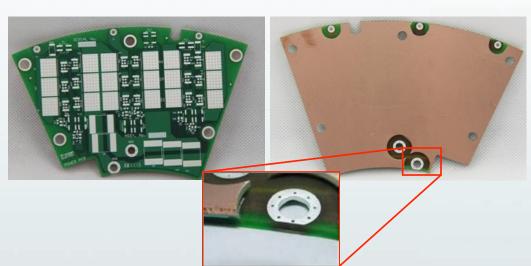
Change the AI core for Ni/Fe alloy and PCB with high magnetic conductivity.



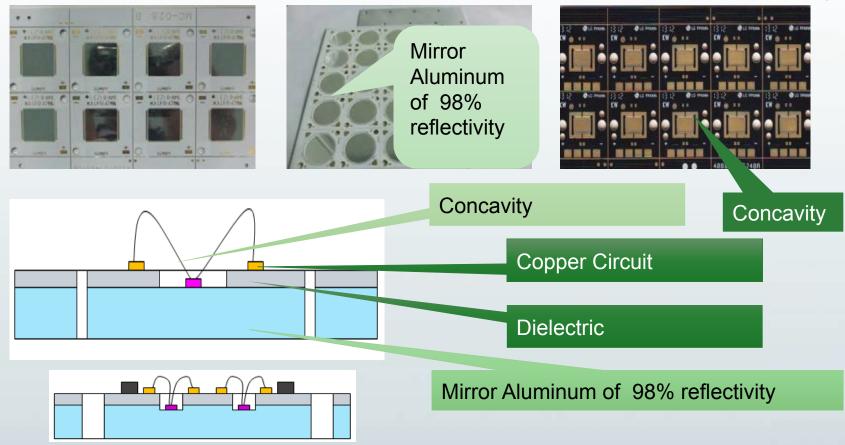


Flexible PCB with metal base



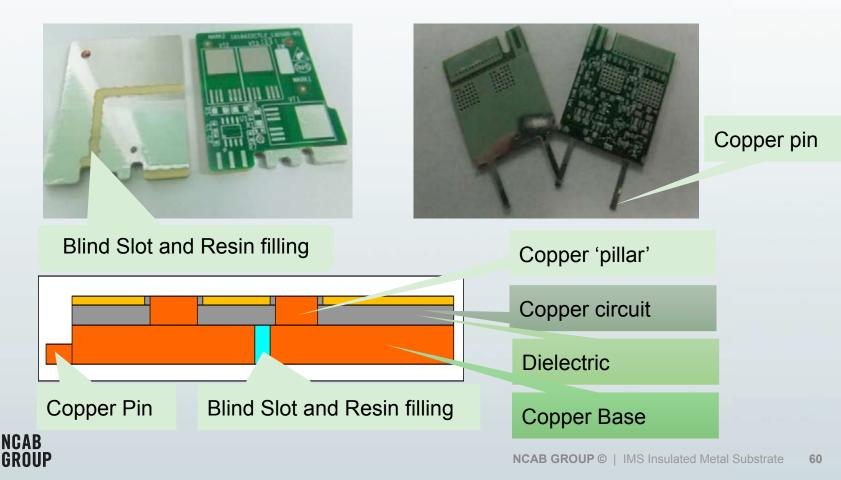

3D Semi-flex IMS PCB

Mismatch between PCB and metal base size.



Metal base > PCB (larger fixing plate)

Metal base < PCB (cavity within the area of the PCB)



COB PCB with mirror aluminum of 98% reflectivity

Copper base PCB with copper protruding, blind slot and copper pin

Design for Manufacture

In most aspects, the design rules by IPC-2221A can be used.

Drilling / Routing, this can be done on prototypes / low volumes. It is not cost effective in volume since the aluminum is rather 'nasty' to drill / rout mechanically.

V-cut method is good for both low and high volumes.

Punching of holes / outline. This is the recommended method to produce these board and it requires that the design is optimized for punching.

Flatness since this design contains 3 different material. The different CTE values needs to be taken under consideration. The aluminum will dominate if the copper thickness is below 10% of the total thickness.

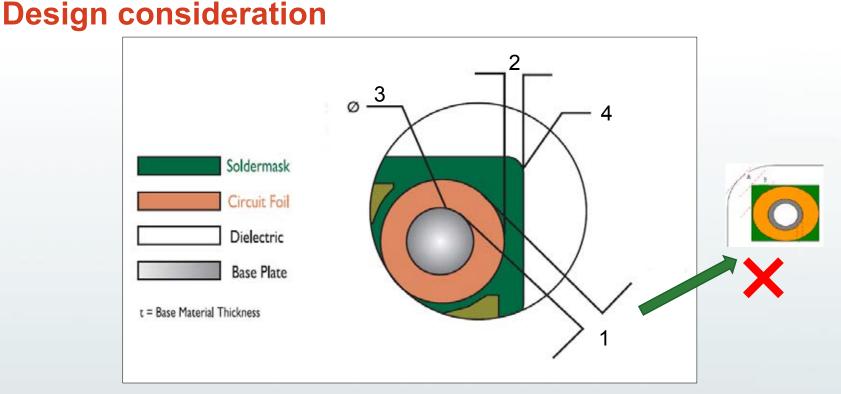
Standard routing thickness: 0.51mm-3.2mm (Max. 5.0mm)

V score depth:

- TV light bar with board thickness <1.5mm left thickness>=0.15mm (unit separate between us but connect by one nail with V-cut at the end)
- For daylight lamp>0.1mm (unit close to unit)
- Other normal Light>1/5board thickness

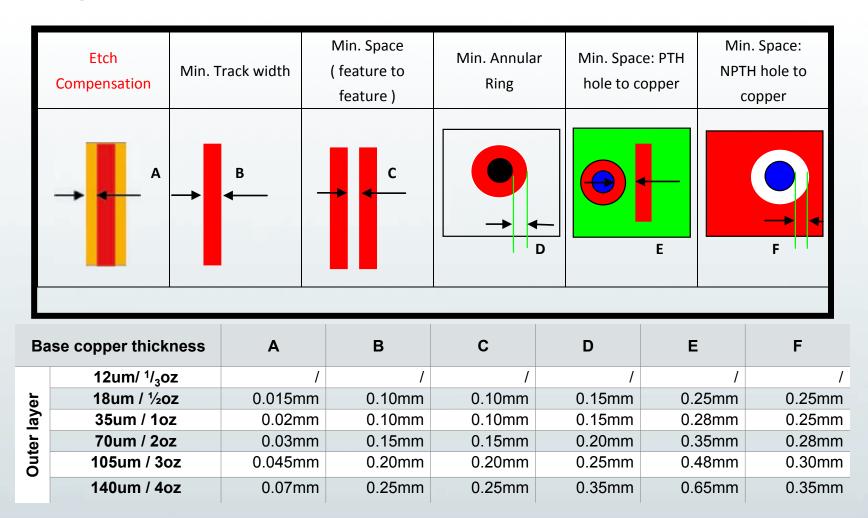
Clearances from edge of metal / holes / circuitry: Same to FR4

Min spacing between circuits: track / gap: 4mil /4mil



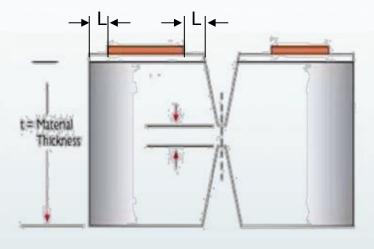
Soldermask	1
Circuit Foil	
Dielectric	
Base Plate	t
t = Base Material Thickness	2 3

- 1. Clearance 0.15mm for drilling / 0.45mm for punching
- 2. For 1oz and 2oz, copper to outline ≥0.35mm for punching (not consider high pot voltage, for high-pot, should add 0.1mm more)
- 3. Min drilled diameter $>= \frac{3}{4} t$
- 4. Min Punching hole diameter >=1.0 t and must >=1.5mm



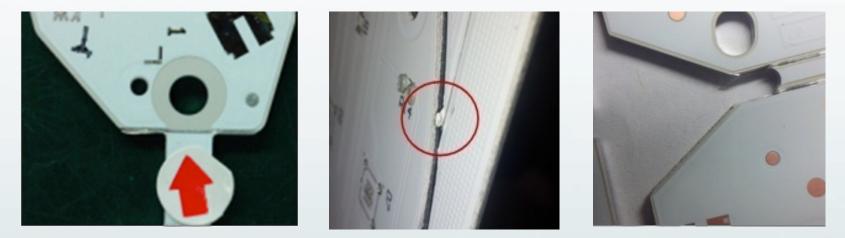
DESIGN FOR MANUFACTURE

- 1. For ring of hole, don't make it to be as square
- 2. Refer to "2" in last slide
- 3. Min punched hole >= material thickness * 1 and >= 1.5mm
- 4. Min radius :0.5mm



Safe distance of copper to board edge (L)

Copper to edge distance for high pot test						
Distance	Highest testing v	Thickness of				
	No SM cover	SM cover	Dielectric			
0.35mm	DC600V\0.5 mA	DC1300V\0.5 mA	100um+/-30%			
0.45mm	DC800V\0.5 mA	DC1700V\0.5 mA	100um+/-30%			
0.55mm	DC1000V\0.5 mA	DC2100V\0.5 mA	100um+/-30%			
0.65mm	DC1200V\0.5 mA	DC2200V\0.5 mA	100um+/-30%			
0.75mm	DC1300V\0.5 mA	DC2200V\0.5 mA	100um+/-30%			
0.85mm	DC1400V\0.5 mA	DC2400V\0.5 mA	100um+/-30%			
0.95mm	DC1400V\0.5 mA	DC2600V\0.5 mA	100um+/-30%			
1.05mm	DC1500V\0.5 mA	DC2800V\0.5 mA	100um+/-30%			



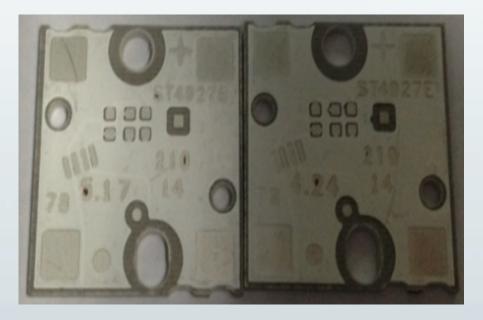
The high pot resistance conflicts with thermal conductivity normally a lower dielectric thickness is better for thermal conductivity, but electric insulation strength will be weaker.

So keep the safe distance of copper to edge as well as considering thickness of dielectric at the design stage.

Routing / punching and V-cut line cannot aim to be edge-to-edge otherwise there is a risk that burrs will occur.

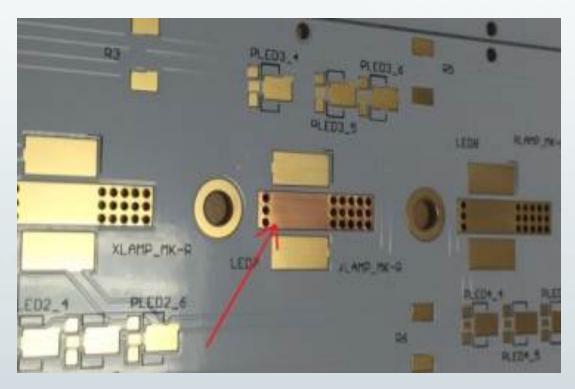
For punching, hole to board edge \geq board thickness, because of the risk of deformation / damage to holes.

Minimum hole size $\ge \frac{3}{4}$ of board thickness and ≥ 1.0 mm, otherwise there is a risk of drill bit breakage (cause missing holes).


The minimum gap for routing shall be 1.80mm.

For high pot test, according to high pot requirement, the copper to board edge distance will be difference, it is direct ratio.

For example, DC600V, distance of copper to board edge>=0.35mm, plus punching tolerance +/-0.1mm (punching), safety distance should be 0.45mm.

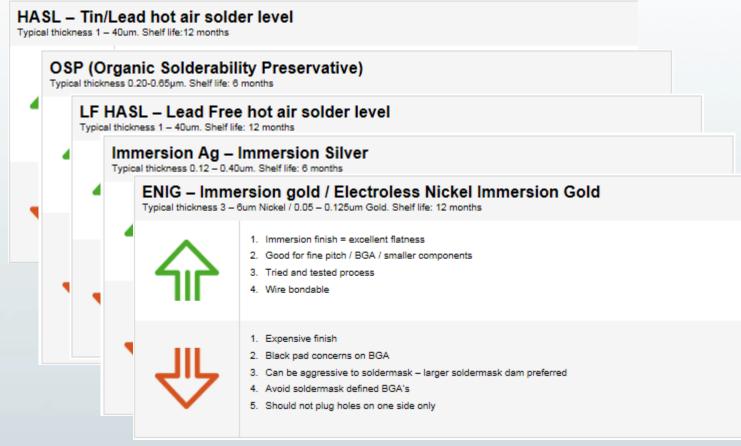


If the surface treatment is immersion tin, then there is a risk that words or markings applied in soldermask (such as in "8" "6" etc.) may be loose definition or peel off. Where possible should fully filled or change it to be etched or silkscreen.

If the surface treatment is ENIG, and after ENIG second stage drilling is applied within the pads, then the pad may be discolored with copper as the drilling process may affect the nickel and gold.

Cost factors.

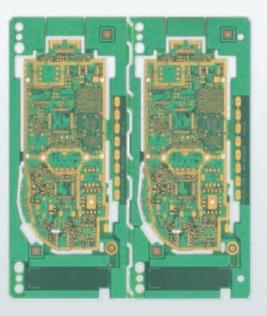
COST FACTORS Cost factors


The main factors that affect the cost of an IMS PCB:

- 1. Different metal bases / cores aluminium, copper, steel
- 2. Different thickness of material copper weights, metal base, dielectric thickness
- 3. Dielectric thermal properties 1W, 2W, 3W, 5W, 8W
- 4. Surface finish
- 5. Profile type punch, routing, score
- 6. Material utilisation

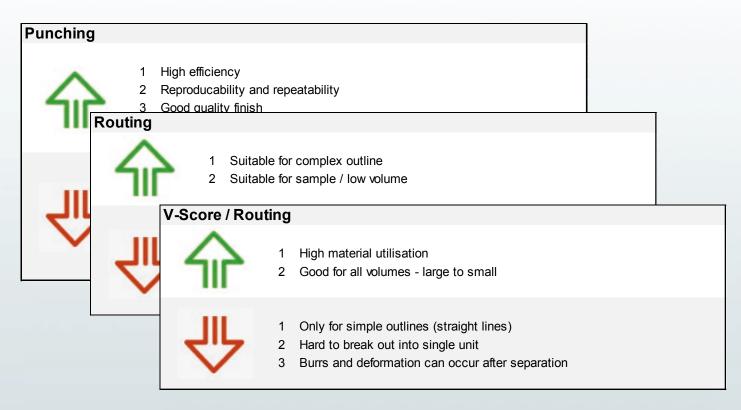
COST FACTORS Surface finishes

We know already that different finishes have positives and negatives:



COST FACTORS Surface finishes

Example below is to show difference the finish makes to a raw PCB. Prices may vary from factory to factory.


Туре	2-Layer	12-Layer
OSP	0%	0%
HASL	0%	0%
LF HASL	3%	0,8%
Imm Ag	18%	4.5%
Imm Sn	18%	4.5%
ENIG	22%	5.5%
ENEPIG	By quote	By quote

COST FACTORS Profile type

Three main methods:

COST FACTORS Profile type

Example below based upon real project using panel size of 500 x 600mm and a circuit size 460.00 x 6.00mm.

	Material utilisation	Output / Efficiency
Punching	72 ccts per panel 66.2% material utilisation	1000 ccts / hour (> 13 panels per hour)
Routing	72 ccts per panel 66.2% material utilisation	72 ccts / hour (1 panel per hour)
V-Score / Routing	96 ccts per panel 88.3% material utilisation	261 ccts / hour (>2.7 panels per hour)

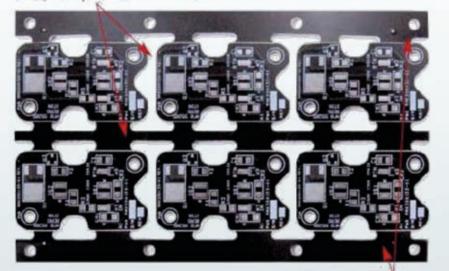
Summary – very much volume and design dependant.

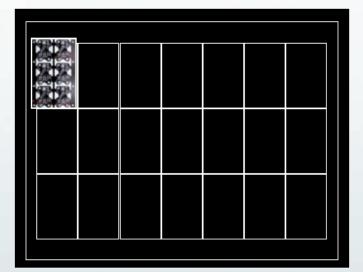
IMS material is available in limited panel sizes, the standard is:

Polytronics 500 x 600mm, 457 x 610mm, 500 x 1200mm *480 x 574mm, 437 x 584mm, 480 x 1174mm*

Bergquist 457 x 610mm 437 x 584mm

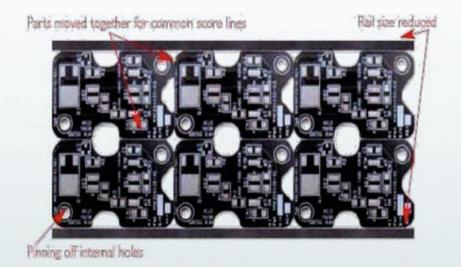
Laird 457 x 610mm 437 x 584mm

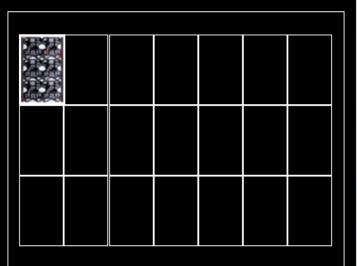

Kinwong 450 x 600mm, 390 x 600mm, 330 x 600mm 430 x 574mm, 370 x 574mm, 310 x 574mm


NOTE: We must remove 13mm on each edge in the X, and 10mm in the Y

Example – original

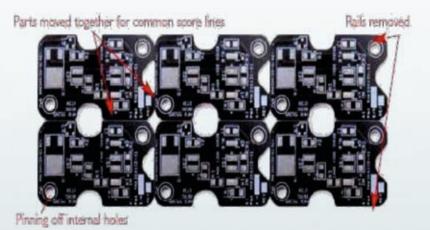
Parts spaced apart, lack of common score lines.

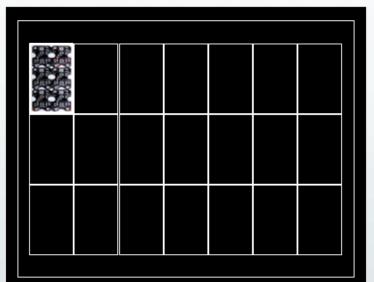

Circuit size = 24 x 40mm, Panel size = 78 x 124mm


Material = Bergquist MP = 457 x 610mm (437 x 584mm)

Panelisation = 126 circuits / 21 panels, with utilization of 43.4%

Example - reduce spacing and carrier (routing will cut into carrier)


Circuit size = 24 x 40mm, Panel size = 58 x 120mm


Material = Bergquist MP = 457 x 610mm (437 x 584mm)

Panelisation = 186 circuits / 31 panels, with utilization of 64.1%

Example – remove carrier completely

Circuit size = 24 x 40mm, Panel size = 48 x 120mm

Material = Bergquist MP = 457 x 610mm (437 x 584mm)

Panelisation = 222 circuits / 37 panels, with utilization of 76.5%

Technical capability

TECHNICAL CAPABILITY – PROCESS CAPABILITY

Item	Feature	Processing capacity
	Brand of MCCL	Bergquist, Laird, PTTC, Kinwong, Arlon, Doushan, SYE, Chin- shi (Qingxi), Ventec,
	Laminate type	AL base , Copper base, Stainless steel base,
	Metal type	AL:1100H14, 5052H34, 6061T6 Cu:C1100, C1220, Stainless steel:SUS430
	Material size	Standard = 600 x 457mm Maximum = 1200 x 550mm
Laminata	Final board Thickness	0.4 - 3.2mm
Laminate	Standard Metal Thickness	0.3mm, 0.4mm, 0.5mm, 0.6mm,0.8mm, 1.0mm,1.2mm, 1.5mm, 2.0mm, 2.5mm, 3.0mm
	Tolerance of board thickness	± 0.10mm
	Dielectric thickness	0.05 - 0.2mm
	Thermal Conductivity	1W/m.k - 8W/m.k
	Breakdown Voltage	>=500V/mil (per data sheet)
	Layer Count	1 - 8L
Trace	Min trace width	0.10mm
	Min trace space	0.10mm
	Tolerance of trace width/space	±15%
Copper thickness	Copper thickness	1/3-4Oz with UL, 5-6OZ without UL
	Drilling Hole size	0.50 - 6.00mm
	Finished Hole size (NPTH)	0.50 - 6.00mm
	Hole size tolerance (Metal and FR4)	±0.075mm
Hole size	Hole position tolerance	±0.10mm
	Min Counter sink size	1.0mm
	Countersink angle	90 - 180 degree
	Min depth of Counter sink	0.15mm
	Aspect ratio	5:2

TECHNICAL CAPABILITY – PROCESS CAPABILITY

Item	Feature	Processing capacity	
V-Cut	V-Cut angle	30°, 45°, 60°	
	V-Cut angle tolerance	± 5°	
	V-Cut depth tolerance	± 0.1mm	
		Punching after V-Cut: 0.2mm	
	Min.V-Cut web thickness	Manual separate boards after V-Cut:0.2mm	
	V-Cut board thickness	0.5 - 3.2mm	
	V-Cut outline dimensional / positional tolerance	0.1mm	
Solder mask	Approved solder mask types	Taiyo, Tamura, Greencure	
	Min Solder Dam	0.1mm	
	Min Solder mask opening	0.05mm	
	Solder mask cover conductor	0.05mm	
Dimension	Punching tolerance of outline dimension	±0.10mm	
	Routing tolerance of outline dimension	±0.10mm	
Surface finish	HAL, LF HASL, OSP, ENIG, Immersion Silver, Immersion Tin, Silver plate,		

Questions?

RoHS

作力首要 安全省部主

NCAB GROUP SEMINARS Improve your knowledge about PCBs – participate in our seminars

Technical trends in the global PCB industry How to produce a printed circuit boards New technologies Cost drivers in PCB production Surface finishes HDI - High Density Interconnect IMS - Insulated Metal Substrate Rigid-flex NCAB Group PCB Specification Impedance controlled boards DFM – Design For Manufacturing IPC vs. Perfag Reliability, IPC & NCAB Material for lead-free production Technical advice NCAB Group Laboratory