选择合适的表面处理及优化设计是确保产品性能优异的重要步骤,但是不是到此为止了呢?不是,您还必须确保工厂有指定的材料,且该厂通过UL认证可以使用该材料。
NCAB知道,材料的选择多种多样性。凭借我们的专业技术知识,我们能在材料的选择和规格上为您提供指导和协助。
刚性材料
应该如何指定材料?
我们的建议是,尽量不要指定某一个特定品牌或材料种类,以免最终选择工厂时限制了您的选择。其中的原因是,许多知名品牌材料在我们的工厂中有着广泛使用的同时,有些工厂有数个品牌的材料均能达到所要求的材料规格。这时,供货情况以及价格就可能成为使用哪个品牌的决定因素。
这并不意味着您不能指定所知的材料,绝非如此。如果您根据经验知道某种材料适合您的产品,那么您可以列出这种产品,并加上“或同等材料”的附言,NCAB的技术人员和采购团队就会审核各种材料,并向您提供一种能满足功能需要又不影响性能的替代产品。
每一家知名的材料制造商都按IPC 4101(刚性及多层印制电路板的基材规范)进行产品分类,以便用此规格确定性能特征并加以分类, 同时详细界定了基材的特征,此外,工厂遵循IPC-4101-xxx分类能做出明智的选择,并确保性能符合预期要求。
如果您需要有关IPC 4101或材料规格方法的更多信息,那么请联络 NCAB集团,我们乐意提供帮助。
指定材料特性时的关键因素
考虑基材的性能特征时,应考虑材料的相关机械特性(特别是材料在热循环/焊接操作过程中的相关性能)和电气特性。这些通常被认为是标准产品甄选过程中的最常见因素。这是因为所有被考虑的材料都要达到UL可燃性等级V-0。
关键材料特征如下所示。
- CTE – Z axis(Co-efficient of thermal expansion): This is a measure of how much the base material will expand when heated. Measured as PPM/degree C (both before and after Tg) and also in % over a temperature range.
- Td (Decomposition temperature): This is the temperature at which material weight changes by 5%. This parameter determines the thermal survivability of the material.
- Tg (Glass transition temperature): The temperature at which the material stops acting like a rigid material and begins to behave like a plastic / softer.
- T260 (Time to delamination): This is the time it take for the base material to delaminate when subjected to a temperature of 260 degrees C.
- T288 (Time to delamination): This is the time it take for the base material to delaminate when subjected to a temperature of 288 degrees C.
- Dk (Dielectric constant): The ratio of the capacitance using that material as a dielectric, compared to a similar capacitor which has a vacuum as its dielectric.
- CTI (Comparative tracking Index): A measure of the electrical breakdown properties of an insulating material. It is used for electrical safety assessment of electrical apparatus. Rating can be seen below.
Tracking Index (V) | PLC |
---|---|
600 and greater | 0 |
400 through 599 | 1 |
250 through 399 | 2 |
175 through 249 | 3 |
100 through 174 | 4 |
< 100 | 5 |
下表摘录了IPC-4101分类的某些特性,重点介绍了已经提到的一些细节。
IPC-4101 | 99 | 101 | 121 | 124 | 126 | 127 | 128 | 129 | 130 |
---|---|---|---|---|---|---|---|---|---|
Tg (min) C | 150 | 110 | 110 | 150 | 170 | 110 | 150 | 170 | 170 |
Td (min) C | 325 | 310 | 310 | 325 | 340 | 310 | 325 | 340 | 340 |
CTE Z 50-260 C | 3,5% | 4% | 4% | 3,50% | 3% | 4% | 3,50% | 3,50% | 3% |
T260 (min) minutes | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
T288 (min) minutes | 5 | 5 | 5 | 5 | 15 | 5 | 5 | 15 | 15 |
Fillers > 5% | Yes | Yes | NA | NA | Yes | Yes | Yes | NA | Yes |
Dk/Permittivity (max) | 5,4 | 5,4 | 5,4 | 5,4 | 5,4 | 5,4 | 5,4 | 5,4 | 5,4 |
IMS – 高效散热技术
绝缘金属基板的新机遇
为满足较大的能量或局部热负载量要求,比如在具有高强度LED的现代建筑中,可以运用IMS技术。IMS是“Insulated Metal Substrate”的缩写。这是一种在金属板(通常是铝板)上应用特殊的预浸材料制成的PCB,其主要特性是散热性能极佳,对高电压具有良好的绝缘特性。NCAB与EBV和数家其他公司一起,参与了示范产品的研制,以便吸引市场关注高强度LED与IMS技术结合所带来的机遇。
最重要的成分是导热预浸材料,这是一种陶瓷或填硼材料,具有极佳的散热性能。其导热性通常是FR4的8-12倍。
IMS PCB的散热优势
一块IMS PCB的热阻可以设计得很低。例如:如果您把一块1.60 mm的FR4 PCB与一块具有0.15 mm热预浸材料的IMS PCB对比,您会发现IMS PCB的热阻是FR4 PCB的100倍以上。在FR4产品中,大量散热会非常困难。
NCAB能提供各类材料,能满足几乎所有客户的一切需要,无论是特定品牌还是符合IPC-4101分类/材料特性的同等材料。现有材料分为四大类:标准(广泛应用)、高级(少量工厂特有)、柔性和IMS。
另一种方案是把FR4材料与过孔结合,比如塞入热传导材料,改善PCB的热性能。与使用传统的FR4技术相比,这种做法更富于成本效益。
在考虑基材的性能特征时,应该同时考虑其机械性能(特别是在热循环/焊接操作中的相关性能)以及材料的电性能。
有关材料的建议
下方为针对不同条件和技术应用的板材推荐,但应当注意,这些都是非常“粗略”的建议。我们建议客户充分评估自身的焊接流程,确定材料必须承受的条件因素,如峰值温度、高于熔融态温度的持续时间,并考虑到Td、T260 和 T288的需求。
材料符合 IPC 4101/121(最低 Tg 130 摄氏度)
Total thickness | ≤ 1.60mm |
Number of layers | 1 to 4 |
Copper | < 70µm |
材料符合 IPC 4101/99 或 /124
Total thickness | ≤ 2.40mm |
Number of layers | 6 to 12 |
Copper | ≤ 70µm |
Blind / Buried vias / µvias |
材料符合IPC 4101/126 或 /129
Total thickness | >2.40mm |
Number of layers | 12+ |
Copper | > 70µm |
Blind / Buried vias / µvias |
NCAB的实践经验显示,在受控的组装 / 焊接环境下及一般的产品应用, 符合 IPC-4101C /21 要求的材料也可(常规工艺)在无铅环境中工作。
原则上,NCAB在每家工厂的物料表中批核的较低等级FR-4 ,其多数参数均满足/121,除了T260 或 T288。如针对这两个参数有要求,可能需要使用更高等级材料。